If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5g^2-12g=0
a = 5; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·5·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*5}=\frac{0}{10} =0 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*5}=\frac{24}{10} =2+2/5 $
| 28^x=1/3 | | 3(a+22=12a=30 | | 11r+5=2r+41 | | C(m)=2.25+.75m | | -110=7x+3x+10 | | (4x-2)+(9x-22)=180 | | 157.50=9s+19.32 | | (3x-2)^5=32 | | 7h-25=80 | | 3n^-75=0 | | 18x+4-20=180 | | 20x+8=-5x+16 | | 41=(-4p)=5 | | (4x-2)=-2(3+6x)-5 | | 17u-15u=18 | | 7/h=56 | | 4(5x+2)=-4(2x-4)+3x | | 16x+6=4x+30 | | 8p-2=6p+46 | | 3(4-2x)=2(x-3) | | -14-u-1=14u+1u | | 7x–5=8(x+3) | | .50x=35 | | 8x+5=17x-22 | | c-1/6=1/6 | | 7j−17=4 | | -14-u-1=14u+1+u-1 | | (5x-23)=(7x-1)° | | -3/4x+1=-1/2 | | 11×x=121 | | .50x-20=35 | | 9c+32=32 |